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Electronic Loads — A New Generation

DC electronic loads have been available for electronic testing
applications for several decades. Today'’s products range from
switched resistors, high speed active loads utilizing power
semiconductors, and regenerative loads that return power

to the utility. Each technology group has found their way into
various applications. This article describes some advantages
and disadvantages of the technology alternatives and presents
a newly developed, hybrid circuit topology offering some unique
performance features.

Switched Resistive Loads

The oldest generation of electronic loads is based on switching of
resistive components. Depending on the power level, resistors are
commonly constructed from steel plates, nichrome wire, or metal
film resistors. Switched resistor loads have the lowest cost per
watt, but the poorest performance in terms of dynamic response,
programmability, and protection.

Figure 1 shows two circuits that are commonly used with resistive
switching. The two configurations differ in their ability to select the
desired resistor combination versus the ability to dissipate power.

Figure 1a, binary switching, provides the most accurate resistance
selection per quantity of components. Resistor R2 has twice the
resistance as resistor R1, R3 has twice the resistance as R2, and so
forth. This circuit is often used in low power applications to obtain
digital to analog conversion where power is not a consideration.
Power varies as the square of applied voltage and as a load, binary
switching exhibits poor performance in terms of power dissipation
at lower voltage levels. Binary switching is the best choice for
applications when the applied voltage is fixed.

Figure 1b, optimized power switching, allows resistors to be placed
in series or parallel offering better power dissipation performance
over a wider range of applied voltage. The disadvantage, when
compared to binary switching, is that optimized power switching
has a lower selection of available resistor settings per number

of components. With three switches, maximum rated power
dissipation can be achieved at half and full rated voltage. Other
resistor configurations are also possible by modulating resistor
on-states with the available switches.

In DC systems and when using contractors for the switching
devices, performance is usually limited by the contractor DC current
rating. For cost reasons, an AC contractors are commonly used
for switching resistor elements, but with these devices, switching
is restricted to low voltages were arcing can be minimized. This
limitation prohibits the use of contactor-based switching for
dynamic-load applications. In addition, use of DC contactors, while
available, are rarely used because of cost and size constraints.
Utilizing power semiconductors as the switching elements
eliminate the constraint imposed by AC contactors, but are rarely
used in favor of MOSFET load technologies.

Most electronic loads using resistive elements are fabricated by
end users wanting high-power, low-cost solutions for their testing
needs, sacrificing dynamic loading and programmable protection
capabilities.

S3
R1 R2 R3 Rn

Figure 1. (left) Binary switching and (right) Optimized power switching
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MOSFET Loads

Metal Oxide Field Effect Transistors, MOSFETSs, loads can be
deployed as state-of-the-art electronic loads to address the
limitations of resistor-based loads. As illustrated in Figure 2, these
electronic loads use semiconductor devices, operated in the linear
region, to allow full power and full control over the entire VA rating
of the product. MOSFETSs have to be specifically rated to operate
in the linear region and have safe operating curves well below the
maximum power rating when used as an electronic switch.[1-2]
Circuitry for MOSFET loads requires each stage to be controlled

in a closed loop to linearize the response. As shown in the figure,
each device produces a load current defined by VC/Rn. Closed loop
amplifiers enable multiple MOSFETSs to share load current equally.
In addition, MOSFET loads have a fast dynamic response.
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Figure 2. MOSFET Load

The reliability of MOSFET loads depends on the allowed power
dissipated per device, current sharing, and cooling design. Water
cooling is commonly used to enhance cooling performance and
enable higher power loads.

MOSFET loads come at a cost premium over switched resistor
loads.

Regenerative Loads

In the past decade, regenerative loads started appearing as a viable
product. A regenerative load is, in a simplified sense, an AC to DC
power supply with power circuitry reversed to allow current flow

in the reverse direction. Response times are similar to that of DC
power supplies and special circuitry is needed to stop operation in
the event that the power mains voltage is disrupted for any reason.
Regenerative loads can be compared to solar inverters as far as
performance with exception to the DC range of operation. Like
switched resistor loads, obtaining maximum power operation over
a wide voltage range requires special circuitry rated at maximum
voltage and maximum current; such performance demands can
greatly increase the cost as compared to a conventional switching
power supply.

The major benefit of regenerative loads is that energy used for
testing can be recovered. Some regenerative loads are designed
to operate as both a source and sink. These products, regenerative
power supplies, must have a dual set of electronic switches.

Using regenerative loads in pulse current applications is not
recommended because any pulse current at the input must flow
through the unit and appear on the power mains. The economics of
regenerative loads must be evaluated in terms of capital equipment
costs versus energy savings.

Active Resistive Loads

Active Resistive loads are a blend between switched resistor loads
and MOSFET loads. The advantage of resistive loads is cost per
watt of dissipating power and the advantage of MOSFET loads is
speed of performance and the ability of dissipating power over

a wide range of control. Figure 3 shows the basic concept of an
Active Resistive load [3]. As illustrated, a critical part of the design
is that resistors are placed in series with MOSFETs. MOSFETs

are a voltage to current, transconductance, devices. Voltage
perturbations resulting from resistors switching are compensated
with reverse voltage perturbations across the MOSFETs. Amplifiers,
used to share current between devices, do not need to respond
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quickly to these voltage changes because of the profile of MOSFET
devices when operated as a transconductance device. A constant
gate voltage in the device's active region provides nearly a constant
current.

The range of maximum power loading, like in resistive loads,
depends on the number of resistors, number of switches, and
applied voltage. To compromise between the number of dissipative
elements and range of maximum power loading, both resistor
configurations as described in Figure 1a and 1b, are applied.
Careful design of the cooling system can enable maximum power
output over half-rated to full-rated voltage. With sufficient number
of resistor switching states, power dissipation can be shared with
an 80% to 20% ratio for resistor to MOSFET power dissipation,
respectively.

Below half-rated voltage and as described previously, maximum
power dissipation varies as the square of applied voltage. Having
a series MOSFET connection enables a broader profile for lower
voltage applications. This requires the resistor elements to be
shorted. If the maximum power is limited to 20% of the total using
the MOSFET section of the load, this part of the load can provide

a 20% maximum power profile. While this is not ideal, it is an
effective compromise when considering the cost benefit.

sS4 S4n

R3 R3n

! o

Figure 3. Active Resistance Technology electronic load

With the MOSFET section of the load shorted, the electronic load
becomes a purely resistive and the load is operated in rheostat
mode. While this could be considered a downgraded load, there are
many applications where a purely resistive profile, with no closed
loop control, is desirable. The dynamically switched resistor states
eliminate the possibility of two closed loops, that of the source and
load, to operate against one another. Bandwidth for step changes
resistance depends on the speed of the resistor switches. The
Active Resistive load can provide 80% of the load’s power rating
over a range of half-rated to full-rated voltage.

Figure 4 illustrates the load profiles of MOSFET, resistive, and active
resistive operation.

Robustness is a key characteristic of Active Resistive loads.
Current limiting is constantly enabled with a series connected
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resistor. A sudden demand change in current will cause the
MOSFETSs to saturate protecting the devices from exceeding their
safe operating area.

Balancing power between the resistors and MOSFETSs presents
one of the key challenges for effective Active Resistance load
operation. The MOSFETs must have a range of voltage to offset
the voltages produced by the switching resistors. Load voltage
and current must constantly be monitored to provide resistor
state changes along with analog control of the MOSFETSs. High
speed digital signal processors (DSP’s) are required to make such
calculations to ensure proper operation. Step load responses
require feed forward compensation to force a change in resistance
prior to changing load current with the MOSFETSs. If step changes
in resistance are made quickly and MOSFETSs are made to respond
soon after, MOSFET safe operating area limitations can be
maintained for reliable operation.
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Figure 4. Active Resistance current voltage (IV) load profiles

Conclusion

This article provides an overview of electronic loads currently
available, namely: switched resistance, MOSFET, regenerative, and
newly introduced hybrid, Active Resistance. Each load topology
has advantages and disadvantages, ranging from cost, speed of
operation, to loading as a function of applied voltage. The Active
Resistance topology has characteristics of switched resistance
and MOSFET loads combined as well as operating independently
of others.
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